

Microwave noise sources in AlGaAs/GaAs HBTs

Paulius Sakalas^{&§}, Michael Schröter[&], Pete Zampardi[@], Herbert Zirath^{*}, Roger Welser[#]

[&]Dresden University of Technology, Dresden, 01062, Germany schroter@iee.et.tu-dresden.de

[§]Semiconductor Physics Institute, Vilnius, 2600, Lithuania, sakalas@iee.et.tu-dresden.de

[@]Conexant Systems, Inc., Newbury Park, CA, 9320, USA peter.zampardi@conexant.com

^{*}Chalmers University of Technology, 41296, Göteborg, Sweden, zirath@ep.chalmers.se

[#]Koping Corporation, 695 Myles Standish Blvd., Taunton, MA, USA

Abstract — Scattering and noise parameters of AlGaAs/GaAs HBTs from Conexant with 30 and 35% of Al mole content were measured and modeled. De-embedding of the pad parasitics was accurately performed by using a “two step” method and small-signal modeling. Small-signal hybrid Π type model parameters were extracted from “cold” and “hot” HBT measurements. Thermal, hot electron and correlated base and collector current shot noises were included in the noise model, which accounted well for the measured noise parameters. From the resolution of noise sources it was found that minimum in noise figure at 5 GHz stems from the correlation of base and collector shot noise. Al content in the alloy does not influence the high frequency noise properties of the AlGaAs/GaAs HBTs.

I. INTRODUCTION

Heterojunction bipolar transistors are promising devices for the power, analog and high speed applications. The advantage of HBTs is high gain per amplification stage and very good linearity. Modern technology allows to reduce emitter area so reducing power consumption and keeping high current densities and high speed of operation. Since the devices are used in analog applications the important issue is noise as well. Usually to achieve a better noise performance, high base doping ($\sim 10^{19} \text{ cm}^{-3}$) is used. Nevertheless the noise properties of bipolar devices still remain to be improved and at the moment are not able to compete with those of HEMTs, where NF_{min} at 26 GHz is close to 1 dB. In this aspect microwave noise investigation in $\text{A}_{\text{III}}\text{B}_{\text{V}}$ HBTs is important and challenged a set of works [1]-[13]. Small signal and noise modeling opens the way to resolve noise sources in the HBTs [3], [8] and to find the solutions to fabricate high speed and low noise devices.

In this work we have measured S and noise parameters with a following modeling by using hybrid Π model. We have investigated the contribution of different noise sources on to the NF_{min} and the influence of the Al content in the AlGaAs/GaAs to the NF_{min} .

II. DEVICES, RESULTS, MODELING

We have measured AlGaAs/GaAs HBTs with 30% and 35% of Al mole fraction in emitter alloy with an area of $A_e = 56 \mu\text{m}^2$. The devices were designed and fabricated at Conexant. The layout data of the HBTs is presented in the Table 1.

TABLE I
DEVICE LAYER STRUCTURE

	type	Material	Mole fract.	Concent. (cm^{-3})	Thick. (nm)
7	n	$\text{In}_y\text{Ga}_{1-y}\text{As}$	$y=0-0.6$	$1*10^{19}$	100
6	n	GaAs		$8*10^{18}$	120
5	n	$\text{Al}_x\text{Ga}_{1-x}\text{As}$	$x=0.30-0$	$4*10^{17}$	20
4	n	$\text{Al}_x\text{Ga}_{1-x}\text{As}$	$x=0.3/0.35$	$4*10^{17}$	72.5
3	p	GaAs		$4*10^{19}$	90
2	n	GaAs		$7*10^{15}$	70
1	n	GaAs		$5*10^{18}$	1000

The photo of the single finger HBT see in the Fig.1.

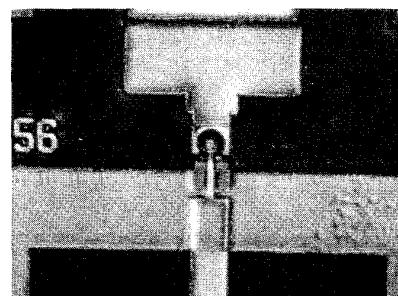


Fig.1. The photo of the single finger AlGaAs/GaAs HBT.

The measurements of S and noise parameters were performed at Chalmers university with HP8510 and ATN NP5 noise parameter system. The de-embedding was performed by “two step” method. Parallel and series parasitics were extracted by using measured S-parameters of the “open” and “short” dummy structures. The parameters of the small-signal model, see Fig.2, were

extracted and used further in noise modeling when the complete model (with pads) was required. Simulated Y-parameters were fitted to measured by means of optimization, see Fig.3, 4.

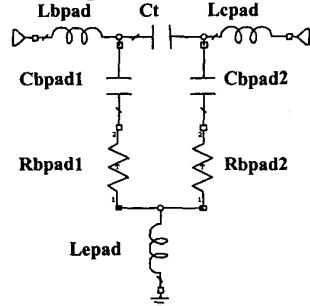


Fig.2. Small-signal model of the “open “dummy” structure.

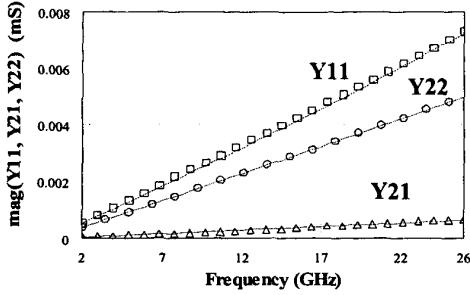


Fig.3. A magnitude of the Y-parameters of the “open” pattern. Lines represent modeled, squares, circles and triangles are measured Y11, Y22, and Y21 respectively.

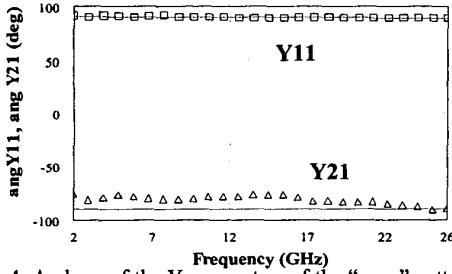


Fig.4. A phase of the Y-parameters of the “open” pattern. Lines are simulated, triangles and squares are measured respectively Y21, Y11.

Very good fit enabled an extraction of parasitic base, $L_{bpad}=47\text{pH}$, collector $L_{cpad}=5\text{pH}$ and emitter $L_{epad}=6\text{pH}$ inductivities and pad capacitances $C_{bpad1}=37\text{fF}$ and $C_{cpad2}=26\text{fF}$ and $C_t=3.8\text{fF}$. The extraction of the emitter, base and collector parasitic intermetallization capacitances ($C_{bep}=17\text{fF}$, $C_{bcp}=23\text{fF}$ and $C_{cep}=5.2\text{fF}$) was performed by using a set of measured “cold” ($V_c=0$, $I_c=0$, $V_b=0$, $I_b=0$) HBT data. S-

parameters of “cold” device were de-embedded from pad parasitics and then modeled. Note, that those capacitances are not included to pads as usually taken [9], [10], [13]. Since the pad parasitics contain resistive elements, there is no way for neglecting C_{bep} , C_{bcp} and C_{cep} just including them into pad parasitics. Further the HBT emitter/base junction was “opened” by applying $V_c=0$, $V_b=1.4\text{V}$ ($I_b=10\text{mA}$). The parasitic base and emitter inductivity together with base R_{b1} and emitter R_{e} resistances were determined from modeled de-embedded S-parameters, see Fig.5. This approach allowed finding the magnitudes of bias independent R_e . Since the total resistance was distributed to bias independent R_{b1} and dependent R_{b2} , only R_{b1} and R_e were further fed into modeling approach.

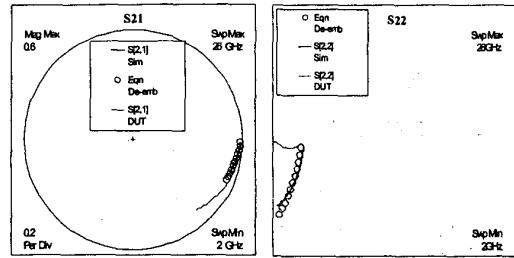


Fig.5. S-parameters of the DUT (line) and de-embedded “open HBT” ($V_c=0$, $V_b=1.4\text{V}$ ($I_b=10\text{mA}$)) measured (open circles) and simulated (lines).

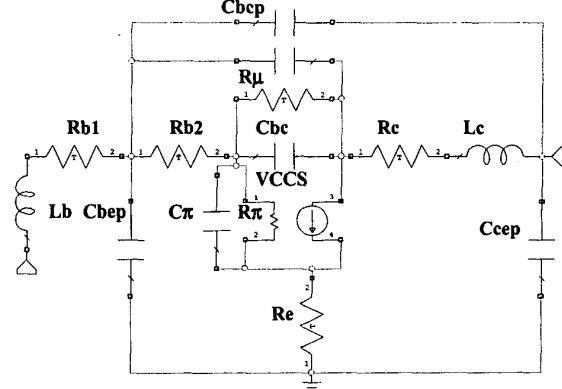


Fig.6. Small-signal model of the pads free HBT.

Finally, having the de-embedded S-parameters of the HBT and using extracted C_{bep} , C_{bcp} , C_{cep} , R_e , R_{b1} and having gm from the DC measurements S-parameters were fitted to de-embedded ones of the HBT at different bias points by exploiting the small signal model, see Fig.6. For the presentation we have chosen not the best (in terms of noise and gain), but interesting point (minimum in NF_{min} (f)). Modeled and measured S-parameters are presented in

collector, the drift velocity of the electrons reaches its maximum value and then drops due to the Γ -L, Γ -X transfer with the following emission of the LO phonons. An effective mass and mobility changes so resulting the fluctuations of the drain current. Decomposition of the

Fig.11. NFmin and resolved noise sources of the HBT, biased with $V_c=0.75V$, $V_b=1.4V$ ($I_c=6.32mA$, $I_b=94\mu A$), open circle and $V_c=3.0V$, $V_b=1.4V$ ($I_c=11mA$, $I_b=163\mu A$), solid triangles.

NFmin to the different noise terms shows that shot noise is the dominant noise source in the HBT, see Fig.11. If the correlation is excluded, the NFmin is increased and the minimum disappears. Noise model yield good agreement

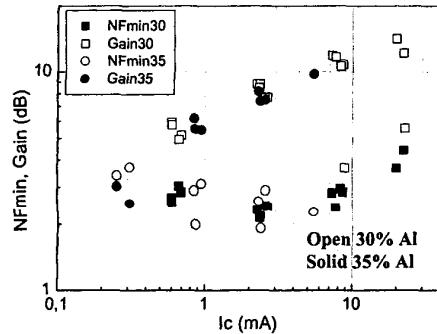


Fig.12. NFmin and associated gain of the 30%, 35% Al HBTs.

with the measured noise parameters at different bias and for the set of different devices. It is evident that at higher V_c and I_c the correlation diminishes. The contribution of T_c to NFmin increases (at 26 GHz is 1dB). Nevertheless it remains small due to the low collector resistance $R_c=3\Omega$. Drain current shot noise was found less than its theoretical value. This supports the model of G.Niu [14], where collector current shot noise is considered as a result of the base shot noise only. It was found that Al content in the alloy does not significantly influence the high frequency

noise properties of the AlGaAs/GaAs HBTs, see Fig.12, where NFmin versus drain current for the set of devices is presented.

III. CONCLUSION

The minimum of NFmin in AlGaAs/GaAs HBTs versus frequency is due to the cross correlation term, which reduces the total NFmin. The dominant noise source in the HBTs is the shot noise. The contribution of the hot electron noise in the lightly doped collector region becomes significant to NFmin at higher bias and frequencies.

REFERENCES

- [1] Young-Kai Chen et al, "Microwave Noise performance of In/InGaAs HBTs," IEEE EDL, Vol.10, No.10, 1989,
- [2] B.W-P.Hong et al, "DC, RF and Noise characteristics of Carbon-Doped Base InP/InGaAs HBTs," IEEE EDL, Vol.41, No.1, 1994,
- [3] F.Herzel et al, "High-Frequency Noise of Bipolar devices in Consideration of Carrier heating and Low Temperature Effects," Solid-State electronics, Vol.38, No.11, 1995.
- [4] L.Escotte et al, Noise modeling of Microwave HETs," IEEE EDL, Vol.42, No.5, 1995,
- [5] M.T.Fresina et al, "High-speed, low-noise InGaP/GaAs HBTs," IEEE EDL, Vol.16, No.12, 1995.
- [6] M.M.Jahan et al, Junction Temperature Dependence of High-Frequency Noise in HBTs," IEEE EDL, Vol.16, No.12, 1995,
- [7] J.P.Roux et al, "Small-signal and noise model extraction technique for HBTs at microwave frequencies," IEEE MTT, Vol.43, No.2, 1995,
- [8] J.J.Liou et al, "Bias, Frequency, and Area Dependencies of High Frequency Noise in AlGaAs/GaAs HBT's," IEEE EDL, Vol.43, No.1, 1996,
- [9] A.Huber et al, "RF Noise Characterization of a High Performance InP/InGaAs HBT," 20th workshop on compound Semicond. Devices and Integrated Circuits, Lithuania, 1996,
- [10] V.Danelon et al, "Noise modeling of InP-based base and collector self-aligned double heterojunction BTs", Proc. ESSDERC'99, pp. 556-557, 1999,
- [11] P.Sakalas et al, "Microwave noise in InP/InGaAs and GaAs/AlGaAs HBTs," Semiconductor Science and Technology, Vol. 16, pp.14-20, 2001,
- [12] D.Costa et al, "Direct Extraction of the AlGaAs/GaAs HBT Small-Signal equivalent Circuit," IEEE EDL, Vol.38, No.9, 1991,
- [13] H.Dodo et al, "Microwave Low-Noise AlGaAs/InGaAs HBT's with p+-Regrown Base Contacts," IEEE EDL, Vol.19, No.4, 1998,
- [14] G.Niu, J.D.Cressler et al, "A Unified Approach to RF and Microwave Noise Parameter Modeling in Bipolar Transistors", IEEE EDL, Vol.48, No.11, pp.2568-2574, 2001.